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Abstract

In this study we focus our attention on a strategy to deal with packed-bed catalytic reactors in order to present an alternative methodology for the
derivation of a new explicit equation for the determination of apparent kinetics coefficients for first order reactions. The Özdural–Alkan methodology,
originally used in membrane separations, was followed during the analytical solution of the governing PDE of the system whose solution have
resulted the explicit equation sought. The apparent kinetics coefficients obtained through the above-mentioned explicit equation were compared
and verified with the numerical solution results of the same system where two different numerical techniques were employed independently. It was
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oncluded that the proposed equation successfully predicts the apparent first order kinetics coefficient in recycling packed-bed catalytic reactors
ith the use of a single reservoir concentration measurement and the corresponding time data.
2006 Elsevier B.V. All rights reserved.
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. Introduction

The successful design of a catalytic industrial reactor lies
rimarily on the reliability of the experimentally determined
arameters used in the scale-up. As a consequence, it is very
mportant to collect accurate and meaningful laboratory data,
ith proper experimental set-ups, and to interpret the data using

ound mathematical techniques. In order to determine the appar-
nt kinetic coefficients in continuous mode operating packed-
ed catalytic reactors, via established techniques, simultaneous
easurement of the concentration differences between the bed

nlet and outlet flows are required [1]. However, when the reac-
ion rate is low and/or the packed-bed reactor residence time
s small, this imposes a significant limitation on the determina-
ion of apparent kinetic coefficients. In these circumstances, it is
ikely to come across with very small concentration differences
etween the bed inlet and outlet flows. Thus, the measurement
f the concentration differences between the inlet and outlet
treams, so as to find apparent kinetic coefficients, can be very
ifficult and inaccurate.

The aim of this study was the derivation of an explicit equa-
tion for the determination of apparent kinetics coefficients for
first order reactions at recycling flow packed-bed catalytic reac-
tors using the Özdural–Alkan technique described elsewhere
[2]. This technique is free from the probable limitations of
the above-mentioned once through flow systems and, benefit-
ing the advantages of recycling flow systems, a new and simple
explicit equation is proposed for the determination of apparent
first order kinetic coefficients in packed-bed catalytic reactors.
The proposed equation brings into a considerable advantage over
currently employed procedures. It allows the determination of
packed-bed catalytic reactor kinetics parameters, for first order
reactions, by mathematical interpretation of the experimental
data gathered from a bench scale recycling flow packed-bed
catalytic reactor where cumulated time change of reservoir con-
centration is monitored. The experimentation can be continued
as long as noticeable changes are observed in the reservoir con-
centration and thus makes it possible the use of the proposed
equation for a wide range of experimental conditions.

Subsequent to the explicit equation derivation, to be used for
the determination of apparent kinetics coefficients, validity of
∗ Corresponding author. Tel.: +90 312 2977475; fax: +90 312 2992124.
E-mail address: ozdural@hacettepe.edu.tr (A.R. Özdural).

the predictions of the explicit equation was sought. For this pur-
pose explicit equation predictions were compared and verified
with the numerical solution results of the same system where two
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Nomenclature

A, B reactant and product, described in Eq. (1)
B1, B2 integration constants
CA reactant concentration in the void fraction of

packed-bed catalytic reactor, mmol cm−3

CA0 reservoir initial concentration, mmol cm−3

h increment in distance used in numerical solution,
cm

i x panel index used in numerical solution
j t panel index used in numerical solution
k increment in time used in numerical solution, s
k1 first order kinetics constant, cm3 g−1

catalyst s−1

L packed-bed height, cm
m mass of catalyst, g
NA reacted amount of A, mmol
Q recycle rate, cm3 s−1

rA reaction rate based on mass of catalyst particles,
mmolreacted g−1

catalyst s−1

S packed-bed cross-sectional area, cm2

t time, s
T function described in Eq. (5)
V reservoir solution volume, cm3

x cartesian coordinate, cm
X function described in Eq. (5)

Greek letters
α coefficient described in Eq. (4)
β coefficient described in Eq. (33)
ε void fraction of the packed-bed
λ2 constant described in Eq. (8).
ν interstitial velocity, cm s−1

θ corresponding time, when designated “thin slice
of solution” is at packed-bed catalytic reactor inlet
(x = 0), s

ρp catalyst particle density, g cm−3

τbed residence time of packed-bed catalytic reactor
(τbed = L/ν), s

τres residence time of reservoir (τres = V/Q), s

different numerical techniques were employed independently.
Since the determination of apparent kinetics coefficients for first
order irreversible reactions is envisaged the appropriate reaction
kinetics based on the weight of catalyst beads can be expressed
as follows [1]:

A
k1−→B (1)

−rA = − 1

m

dNA

dt
= k1CA (2)

where A and B are the reactant and the product, respectively, k1
the first order kinetics constant, cm3 g−1

catalyst s−1; CA the reac-
tant concentration in the void fraction of packed-bed catalytic
reactor, mmol cm−3; m the mass of catalyst, g; NA the reacted
amount of A, mmol; rA the reaction rate based on mass of catalyst
particles, mmolreacted g−1

catalyst s−1 and t is the time, s.

Fig. 1. Schematic drawing of the recycled packed-bed catalytic reactor.

2. Derivation of a simple explicit equation for the
determination of apparent kinetics coefficients for first
order irreversible reactions

Referring to Fig. 1, let’s take a control volume (S	x) in the
packed-bed reactor, where S is the column cross-sectional area,
cm2 and 	x is the height of elemental volume, cm. Neglecting
axial dispersion, the material balance for A gives the following
governing equation.

ν
∂CA

∂x
+ ∂CA

∂t
+ αk1CA = 0 (3)

where ε is the void fraction of the bed; ν the interstitial velocity,
cm s−1 and ρp is the catalyst particle density, g cm−3 and

α = (1 − ε)

ε
ρp (4)

For the present recycle system, the reactant concentration in
the packed-bed catalytic reactor, CA is a function of time and dis-
tance. By assuming a product solution for the partial differential
Eq. (3) and applying the separation of variables technique,

CA = X(x)T (t) (5)

∂CA

∂x
= T

(
∂X

∂x

)
(6)

( )

e
a
i
E

X

T

∂CA

∂t
= X

∂T

∂t
(7)

Substituting Eqs. (5)–(7) into Eq. (3) and after rearrangement:

1

X

dX

dx
= − 1

νT

dT

dt
− αk1

ν
= −λ2 (8)

In Eq. (8) the first term and the second term can only become
qual to each other if they are both equal to a same constant such
s −λ2 (positive or zero values of constant have no significance
n relation to the solution of problem we are considering). From
q. (8) the solutions of X and T are

= B1 exp(−λ2x) (9)

= B2 exp
⌊

(λ2ν − αk1)t
⌋

(10)
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B1 and B2 are the integration constants. Substituting Eqs. (9)
and (10) into Eq. (5) gives

CA = B1B2 exp(−λ2x) exp
⌊

(λ2ν − αk1)t
⌋

(11)

Using the initial condition (at t = 0; for all x, CA = 0 except
x = 0, CA = CA0), B1B2 becomes equal to CA0. Hence,

CA = CA0 exp(−λ2x) exp
⌊

(λ2ν − αk1)t
⌋

(12)

Referring to Fig. 1, let us consider a “thin slice of solution”
at the packed-bed catalytic reactor inlet (x = 0), which is moving
with a velocity of ν, under plug flow conditions. Furthermore,
when this designated “thin slice of solution” is at packed-bed cat-
alytic reactor inlet (x = 0), let us show the corresponding time, as
t = θ. Since this designated “thin slice of solution” is moving with
a velocity of ν, it will reach to the packed-bed catalytic reactor
outlet (x = L), at a time, t = θ + τbed, where τbed is residence time
in the packed-bed catalytic reactor (τbed = L/ν). Consequently,
the boundary conditions (t > 0) for the designated “thin slice
of solution” moving with packed-bed interstitial fluid velocity
become:

B.C. 1 for t = θ (x = 0) CA = CAout|t=θ

B.C. 2 for t = θ + tbed (x = L) CA = CAin|t=θ+τbed

λ

λ
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m
o
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C

C

w
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F
m

B.C. 2 are pertinent) then ∂CA/∂x term in Eq. (3) becomes zero,
and final equation reduces to:

dCA

dt
+ αk1CA = 0 (17)

For the present recycling system, Eq. (17) is only valid for
the case where “outside observer” is moving with the packed-
bed interstitial fluid velocity. Thus, for a stationary observer, it
is incorrect to use Eq. (17) for gaining an insight on CA values.
During the integration Eq. (17) the integral limits should be so
chosen that the moving outside observer criterion be met such
as given below.

t = θ, CA = CAout|t=θ and

t = θ + τbed, CA = CAin|t=θ+τbed

Integration of Eq. (17) gives

ln

[
CAout|t=θ

CAin|t=ϑ+τbed

]
= αk1τbed (18)

Substituting of Eq. (18) into Eq. (16) provides

1

θ
ln

{
CAout|t=θ

CA0

}
= 0 (19)
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t

Employing B.C. 1 in Eq. (12) and solving for λ2 gives

2 = 1

νθ
ln

{
CAout|t=θ

CA0

}
+ αk1

ν
(13)

An interesting point arises for the present problem, where
2, as given in Eq. (13) contains the time term. Özdural and
lkan [2] observed this kind of behavior through the derivation
f an explicit equation to be used for the determination of overall
ass transfer coefficients in membrane separation operations. In

rder to elucidate the behavior of λ2, associated with the present
roblem, the relationship between CAin|t=ϑ+τbed and CAout|t = θ

s required. For this purpose let us combine Eqs. (12) and (13).

A = CAout|t=θ

{
CAout|t=θ

CA0

}−x/νθ

exp

[
−αk1x

ν

]
(14)

Employing B.C. 2 in Eq. (14) gives

Ain|t=ϑ+τbed = CAout|t=θ

{
CAout|t=θ

CA0

}−τbed/θ

exp[−αk1τbed]

(15)

here τbed = L/ν. Let us re-arrange Eq. (15)

1

θ
ln

{
CAout|t=θ

CA0

}
= 1

τbed
ln

[
CAout|t=θ

CAin|t=ϑ+τbed

]
− αk1 (16)

If the R.H.S. of Eq. (16) is constant, so is λ2 as given by
q. (13). The second term of the R.H.S. of Eq. (16) is constant.
urthermore, it is not difficult to show that if the control volume
oves with the velocity of ν (i.e. the above given B.C. 1 and
This proves that the first term of the R.H.S. of Eq. (16) is also
constant and so is λ2.

It is obvious that if the packed-bed column is treated as a
nce through column (single pass, where there is no reservoir)
oth CAout|t = θ and CA0 might be regarded as the column inlet
oncentrations and have the same value. This explains why the
erm is found as zero in Eq. (19), since when CAout|t = θ = CA0 the
ogarithmic term in Eq. (19) becomes ln (1) = 0.

Since λ2 value that is given in Eq. (13) is now proved to be a
onstant, then dλ/dt = 0. The derivative of Eq. (13) gives

dλ

dt
= 1

2λ

[
− 1

νt2 ln
CAout|t=θ

CA0
+ 1

νt

d

dt

(
ln

CAout|t=θ

CA0

)]
= 0

(20)

here λ → ∞ is a trivial solution. Therefore one should use the
ollowing relationship in order to satisfy dλ/dt = 0 condition:

1

νt2 ln
CAout|t=θ

CA0
+ 1

νt

d

dt

(
ln

CAout|t=θ

CA0

)
= 0 (21)

From the properties of the derivatives of logarithmic func-
ions [3]:

d

dt

(
ln

CAout|t=θ

CA0

)
= 1

CAout|t=θ

d

dt
CAout|t=θ (22)

If Eq. (22) is substituted into Eq. (21) and rearranged

dCAout|t=θ

dt
= CAout|t=θ

t
ln

CAout|t=θ

CA0
(23)

With reference to Fig. 1, let us make a material balance around
he reservoir where the reservoir inlet and outlet concentrations
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are evaluated for the same time, t = θ.

(Input rate of reactant into the reservoir)

= (Output rate of reactant from the reservoir)

+ (Accumulation rate of reactant in the reservoir)

QCAin|t=θ = QCAout|t=θ + V
dCAout

dt
(24)

dCAout

dt
= 1

τres
(CAin|t=θ − CAout|t=θ) (25)

where Q is the recycle rate, cm3 s−1; V the reservoir solution
volume, cm3 and τres is the residence time of reservoir, s.

τres = V

Q
(26)

If τbed is small and/or the reaction rate is not very fast, then
for a good approximation, CAin|t=θ+τbed

∼= CAin|t=θ . From Eqs.
(15) and (25) one gets

dCAout

dt
= CAout|t=θ

τres

×
{{

CAout|t=θ

CA0

}−τbed/θ

exp[−αk1τbed] − 1

}
(27)
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alytic reactor with an irreversible first order reaction where
no reference is made to the λ2 expression given in Eq. (13).
Reservoir concentration CAout versus time t profiles, for a pre-
determined set of system parameters, was calculated with the
employment of a certain value of k1.

For the numerical solution of Eq. (3) in addition to the packed-
bed reactor initial condition given in Section 2, the following
reservoir initial condition is used so as to represent the recycling
process that is composed of a packed-bed catalytic reactor and
a reservoir:

I.C. for reservoir : t = 0; CA = CA0

Furthermore, the boundary conditions in Section 2 are given
for an outside observer moving with the interstitial velocity of ν.
The corresponding boundary conditions for a stationary observer
are:

B.C. I for t > 0, x = 0, CA = CAout(t) = CA1(t)

B.C. II for t > 0, x = L, CA = CAin(t) = CAnx+1(t)

∂CA(x,t)/∂x is evaluated by the central difference approxi-
mation and ∂CA(x,t)/∂t is evaluated by the backward difference
approximation. Fig. 1 shows that the column is divided into n
hypothetical slices of thickness 	x = h where time increment is
	t = k. For distance, x and time, t step indices i and j are used,
r

C

1

e

−

β

i

b

C

d
.

From Eq. (23) and (27) it is not difficult to obtain Eq. (28),
hich is the new explicit equation for the determination of appar-

nt kinetics coefficients for first order reactions

1 = ε

(1 − ε)ρp

1

τbed
ln

⎡
⎣

(
CAout|t
CA0

)−τbed/t

ln
(

CAout|t
CA0

)τres/t + 1

⎤
⎦ (28)

Eq. (28) shows that, using only a single reservoir concentra-
ion measurement and the corresponding time data, the explicit
etermination of apparent kinetic coefficient, k1 for the first order
eaction is possible.

. Numerical solution strategies for the determination
f the change of reservoir concentration with time in
ecycling packed-bed catalytic reactor systems

The purpose of this section is to predict and compare CAout
ersus t profiles of the reservoir, by using two independent
umerical solution strategies. The first numerical technique
akes no reference to the λ2 term that is given by Eq. (13),
hereas the second numerical technique employs λ2. For the

ame parameter values, if the CAout versus t profiles of the two
ndependent numerical solution strategies were the same then
his can be taken, as a further validation of λ2 is indeed con-
tant, besides the analysis given in Section 2.

.1. Numerical generation of CAout versus t profiles with
mplicit scheme finite differences technique

The finite differences technique has been employed to pro-
ide a numerical solution to the re-circulating packed-bed cat-
espectively.
i = 1 (represents column inlet and well mixed reservoir):

A1,j+1 =
(

1 − k

τres

)
CA1,j + k

τres
CAnx+1,j (29)

< i < nx + 1
The central difference approximation for ∂CA/∂x gives

∂CA

∂x
= −∂CAi−1,j+1 + ∂CAi+1,j+1

2h
(30)

The backward (referring to the evaluation of ∂CA/∂x) differ-
nce approximation for ∂CA/∂t gives

∂CA

∂t
= −∂CAi,j + ∂CAi,j+1

2h
(31)

Substituting Eqs. (30) and (31) into Eq. (3)

βCAi−1,j+1 + CAi,j+1 + βCAi+1,j+1 = (1 − kk1α)CAi,j (32)

= kν

2h
(33)

= nx + 1 (packed-bed outlet)
It is assumed that the reactant concentration at i = nx + 1 can

e calculated by extrapolating i = nx − 1 and i = nx data.

Anx−1,j+1 − 2CAnx,j+1 + CAnx+1,j+1 = 0 (34)

By solving the equation system presented in Fig. 2, we can
etermine CA1, CA2, . . ., CAn+1 at time step j + 1 from CA1, CA2,
. ., CAn+1 at time step j.
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Fig. 2. Assembly of the set of n + 1 equations for numerical solution.

3.2. Alternative numerical generation of CAout versus t
profiles associated with λ2

Eq. (27) is a first order ordinary differential equation where
the dependent and the independent variables are reservoir con-
centration, CAout and time, t, respectively. Its solution gives CAout
versus t profiles. On the other hand, the derivation of Eq. (27)
is directly connected with λ2 and thus the solution of Eq. (27)
will obviously reflect the properties associated with λ2. Eq. (27)
is solved by numerical integration (fourth order Runge–Kutta
method) using the same parameters of the above given λ2 free
implicit scheme finite differences techniques. The CAout versus
t profiles, generated by the solution of Eq. (27), were compared
with those obtained through the use of λ2 free implicit scheme
finite differences techniques.

4. Results and discussion

Table 1 gives the parameters used during the model solutions
that were taken from the literature [4] where acetic acid and cam-
phane reacted in a recycled packed-bed (Amberlist 15 catalyst
particles) system, to give the pine-fragrance isobornyl acetate.
The authors concluded that reaction rate was a pseudo first order,
and the unavailable reservoir volume was estimated using the
information given in the article. During the numerical generation
o −2 3 −1 −1

w
c
i
t

T
T

P

R
P
P
P
R
R
C

finite differences technique and the numerical integration by
fourth order Runge–Kutta method that is related with λ2. Time
change of CAout predictions of both methods were compared
with each other for every 20 min for the first 2 h and addition-
ally for t = 200 and 400 min. Fig. 3 shows the comparison of
CAout versus time predictions of the two independent numeri-
cal solution methods, where CAout values, obtained by the λ2

free implicit scheme finite differences technique, were plotted
against to those obtained by the numerical integration, using
fourth order Runge–Kutta method, that is related with λ2. Fig. 3
clearly illustrates that the predictions of both methods were in an
excellent agreement. In addition to the theoretical analysis pre-
sented in Section 2, the consistency of the CAout values shown
at Fig. 3 can be considered as a further justification of λ2 that
is given in Eq. (13), is a constant and thus its time derivative
becomes zero.

It is expected that, for a given recycled packed-bed catalytic
reactor set-up, one should obtain the same k1 values regardless of
the reservoir CAout versus t data couple employed in Eq. (28) as
long as the other parameters were the same. Furthermore, if t and
the corresponding CAout data couple are gathered from a numer-
ical solution by using either technique explained in Section 3,
then the k1 value obtained from Eq. (28) should be consistent
with the k1 value that was assumed during the numerical gen-
eration of CAout versus t profiles. Table 2 clearly demonstrates
that the above-mentioned requirements were met precisely.

F
t
r
c

f CAout versus t profiles, k1 value of 2.1 × 10 cm gcatalyst s
as employed in this study. The prediction of the reservoir con-

entration, CAout versus time, t profiles were carried out by two
ndependent numerical solution methodologies as explained in
he above given Sections 3.1 and 3.2, i.e. λ2 free implicit scheme

able 1
he parameters used

arameter (units) Value

e-circulation rate, Q (cm3 min−1) 4.0
acked-bed reactor i.d. (cm) 1.0
acked-bed height, h (cm) 3.9
acked-bed porosity, ε 0.49
eservoir volume, V (cm3) 156.3
eservoir initial concentration, CA0 (mmol cm−3) 4.48
atalyst weight, m (g) 1.86
ig. 3. Predictions of reservoir concentrations with two different numerical solu-
ion methods. x-axis = CAout values calculated by numerical integration that is
elated with λ2, using fourth order Runge–Kutta equations. y-axis = CAout values
alculated by λ2 free implicit scheme finite differences technique.
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Table 2
Apparent first order kinetics coefficient, k1 values calculated from Eq. (28) for
various times

t (min) CAout
a

(mmol cm−3)
k1 × 102 (cm3

g−1
catalyst s−1)

CAout
b

(mmol cm−3)
k1 × 102 (cm3

g−1
catalyst s−1)

20 3.9343 2.1 3.9279 2.1
40 3.4497 2.1 3.4442 2.1
60 3.0247 2.1 3.0200 2.1
80 2.6521 2.1 2.6481 2.1

100 2.3254 2.1 2.3220 2.1
120 2.0390 2.1 2.0361 2.1
200 1.2052 2.1 1.2037 2.1
400 0.3237 2.1 0.3234 2.1

a After method in Section 3.1.
b After method in Section 3.2.

5. Conclusion

The present work proposes an equation for estimation of
apparent first order irreversible kinetics coefficient in packed-
bed catalytic reactors. Instead of the current practices that require
simultaneous measurement of inlet and outlet concentrations of
a packed-bed catalytic reactor, the first order irreversible reac-
tion rate constant, k1 value can be determined by Eq. (28) of this
study. During the employment of the established techniques, one
might frequently encounter the measurement of a small concen-
tration difference between the inlet and outlet streams, and such

small concentration differences might lead to inaccurate estima-
tion of the kinetics coefficients. The proposed equation Eq. (28)
allows the determination of packed-bed catalytic reactor appar-
ent kinetics parameters, for first order reactions, by mathematical
interpretation of the experimental data gathered from a bench
scale recycling flow packed-bed catalytic reactor where cumu-
lated time change of reservoir concentration is monitored. The
experimentation can be continued as long as noticeable changes
are observed in the reservoir concentration and thus makes it
possible the use of the proposed equation for a wide range of
experimental conditions. It was concluded that the proposed Eq.
(28) successfully predicts the apparent first order kinetics coef-
ficient in recycling packed-bed catalytic reactors with the use
of a single reservoir concentration measurement and the corre-
sponding time data.
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